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Abstract 

CRISPR screens with single-cell transcriptomic readouts are a valuable tool to under-
stand the effect of genetic perturbations including single nucleotide variants (SNVs) 
associated with diseases. Interpretation of these data is currently limited as genotypes 
cannot be accurately inferred from guide RNA identity alone. scSNV-seq overcomes 
this limitation by coupling single-cell genotyping and transcriptomics of the same 
cells enabling accurate and high-throughput screening of SNVs. Analysis of variants 
across the JAK1 gene with scSNV-seq demonstrates the importance of determining 
the precise genetic perturbation and accurately classifies clinically observed missense 
variants into three functional categories: benign, loss of function, and separation 
of function.

Keywords:  Single-cell CRISPR screen, SNV, GWAS, Base editor, Causal variant, VUS

Background
Human genetics, population-scale biobanks, and cancer genome sequencing have iden-
tified thousands of genetic variants associated with disease [1, 2]. However, the rate of 
discovery of such variants vastly exceeds our ability to understand and experimentally 
model their functional effects.

High-throughput CRISPR-mediated pooled screening for phenotype [3] or coupled to 
single-cell transcriptomics [4] offers a powerful way to assess the effects of thousands 
of genetic perturbations. However, it is mainly limited to knockouts or manipulation of 
expression level using CRISPR interference or CRISPR activation since the guide RNA 
(gRNA) is used as a proxy of cell genotype and thus the efficiency of the perturbation 
must be very high. This makes it very challenging to screen for single nucleotide variants, 
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since base editing, prime editing, or homology-directed repair (HDR) efficiency is rarely 
high enough [5], is highly variable between different genomic sites and cell types, and 
can lead to undesirable editing byproducts such as bystander mutations, insertions/dele-
tions, or heterozygous edits. Even in those cases where base or prime editor screens have 
been successful [6–9], it is not possible to distinguish cells containing a non-functional 
gRNA that has not edited the genome from cells with a functional gRNA that have suc-
cessfully introduced a benign edit that does not have an effect on cell phenotype. This 
means that benign variants cannot be accurately classified without simultaneous geno-
typing of the cells.

It is possible to directly sequence genomic edits during flow cytometric [9] or life-death 
[10]-based phenotypic selection, allowing SNVs to be screened with these readouts, but 
this is difficult to apply to transcriptomic readouts. A number of methods have been 
developed to allow the coupling of the genotype and phenotype of single cells. These fall 
into two broad categories: those that amplify the whole genome and transcriptome from 
a single cell [11–17] or those that directly read out genotype from the RNA [18–21]. The 
first class is often plate-based, limiting their scalability, with the exception of two recent 
studies that either use split pool barcoding [17] or droplet microfluidics [16] to increase 
the number of cells that can be assayed. While these techniques are useful for discover-
ing natural variation and its effect on the transcriptome, they are not ideal for perturba-
tion screens due to the cost of whole-genome sequencing and the relatively high allele 
dropout rate, making it difficult to accurately call SNVs, especially heterozygotes. Even 
in the best example, allele dropout rates are around 20–25% [13], with high coefficients 
of variation across the genome, and the higher throughput methods show even higher 
variability [16]. One method, TARGET-seq [22], uses targeted amplification of DNA and 
achieves low allele dropout (around 10%), but this is only possible in plates due to the 
need for a large dilution step after cell lysis and thus not scalable to tens or hundreds of 
thousands of cells. The second class of methods relies on the direct detection of variants 
within the RNA, using short [18–20] or long read sequencing [21] to capture variants at 
different locations within the transcript. While these methods require only limited adap-
tation of existing protocols and can be high-throughput, they are only possible for genes 
with high expression levels in order to capture sufficient transcripts from each cell. They 
are also blind to mutations that lose RNA expression such as nonsense or frameshift 
mutations that trigger nonsense-mediated decay, and it is difficult to accurately iden-
tify heterozygous mutants that show allele-specific expression. Importantly, non-coding 
variants that are not transcribed, such as those frequently identified from genome-wide 
association studies, are not accessible to this kind of technology.

To address these limitations in scale, accuracy, and applicability to all SNVs, we devel-
oped a method, scSNV-seq, that uses transcribed genetic barcodes to couple targeted 
single-cell genotyping with transcriptomics to identify the edited genotype and tran-
scriptome of each individual cell rather than predicting genotype from gRNA iden-
tity. This enables accurate high-throughput pooled screening for SNVs with single-cell 
“omics” readouts.
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Results and discussion
We used a previously described [23] cytosine base editor screen in HT-29 cells with 
gRNAs tiling across the JAK1 gene to establish our method. We have phenotypic data on 
the response of each variant to interferon gamma (IFN-γ), which triggers cell death and 
induction of PD-L1 and MHC-I expression, both of which are blocked by loss of JAK1 
function [23]. Interrogated JAK1 variants can inform the genetic basis of immunological 
disorders and mechanisms of cancer resistance to anti-tumor immunity.

Single-cell transcriptomics of base edited cells after IFN-γ treatment showed that 
cells fell into two broad clusters (Fig.  1a). To assign functions to each cluster, we 
assigned gRNAs to each cell (Additional file  1: Fig. S1a) and predicted the resulting 
edits (Additional file 1: Fig. S1d). We identified the two clusters as JAK1 loss of func-
tion (LoF) or not LoF by merging smaller clusters based on gene expression using the 
prevalence of cells with non-targeting gRNAs (NT-gRNA) in each cluster (Additional 
file 1: Fig. S1b, c). Stop codons and splice variants were predominantly contained in the 
LoF cluster, with WT, synonymous, and intronic variants in the not LoF cluster (Fig. 1b, 
Additional file  1: Fig. S1e). This classification was confirmed by comparison with the 
results of previous screens for growth (proliferation score, Additional file  1: Fig. S1f ) 
or induction of PD-L1 and MHC-I (FACS score) in the presence of IFN-γ (Additional 
file 1: Fig. S1g) [23].

Analysis of differential gene expression between the two clusters showed a strong 
enrichment for components of the IFN-γ signaling pathway (Fig. 1c), including JAK1 
itself, IFNGR1, JAK2, IRF9, STAT1, STAT2, and STAT3, and downstream effectors such 
as IL15, IL15R1, CCND1, CCND3, and SOCS3. STAT1 was one of the most downregu-
lated transcripts in JAK1 LoF cells, suggesting a positive feedback loop may maintain 
STAT1 mRNA expression in the presence of JAK1 signaling [24]. Also, the regulatory 
subunit of phosphoinositide-3-kinase (PIK3R1) was highly upregulated in the JAK1 
LoF cells, consistent with extensive cross-talk between IFN-γ and PI3K signaling path-
ways [25].

We next performed targeted single-cell genotyping to identify the precise mutations 
introduced in JAK1 within each cell. To couple the genotype to the transcriptome, the 
cells used for this screen had transcribed genetic barcodes introduced by lentivirus on 
the same vector as the gRNA library (Fig. 1d). We introduced two independent barcodes 
to compare their effectiveness and to increase the sensitivity of barcode detection. This 
showed that the majority of cells had both barcodes detectable (Additional file  1: Fig. 
S2a). One barcode was in the 5′ untranslated region of the puromycin resistance gene 
(puroR BC), and the second was within the first loop of the gRNA (iBAR BC) [26]. Bar-
codes were highly complex (the “ Methods” section), and each transduced cell was thus 
marked with a unique barcode. Both barcodes can be read out in targeted single-cell 
genotyping simultaneously with amplicons tiling across the JAK1 gene, as well as single-
cell transcriptomics using targeted enrichment of the transcribed barcode sequences 
(the “ Methods” section).

Although our single-cell genotyping method has low allele dropout rates of around 
10% [27], there is inherent noise in single-cell genotyping resulting from amplification 
from only 2 copies of the genome. In order to understand how to accurately genotype 
these triploid cells, we bottlenecked the population severely to obtain multiple daughter 
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Fig. 1  A single-cell base editor screen tiling across JAK1 is improved by coupling genotype with 
transcriptome. a UMAP of LoF and not LoF meta-clusters for the non-genotyped experiment including all 
cells with a uniquely assigned gRNA. NT-gRNAs are highlighted in orange. b Distribution of consequences 
of the predicted mutations for each cluster. c Differential gene expression analysis of JAK-STAT pathway 
genes between the LoF cluster and non-targeting gRNAs. AUC < 0.5 indicates downregulation (red, 
if significant) and AUC > 0.5 upregulation (blue, if significant). d Overview of high-throughput SNV 
phenotyping. Base editing of JAK1 was achieved through the introduction of a barcoded gRNA library into 
a doxycycline-inducible cytidine base editor expressing HT-29 cancer cells (left panel, 1). After editing, cells 
were induced with IFN-γ before single-cell transcriptomics (left panel, 2) or bottlenecked and processed for 
targeted single-cell DNA sequencing (right panel, 3). Transcriptomes and edited genotypes of single cells 
were linked through genetic barcodes to assign function to variants of unknown significance (VUS). e UMAP 
combining the non-genotyped (gray) data set with all genotyped cells with confidently called genotype (GT, 
18,978 cells). Red and blue indicate edited and wild-type (WT) cells respectively. f Percentage of barcodes for 
which the called homozygous DNA editing is exactly the same as predicted based on complete editing in 
the window (maroon/black) or for which the functional consequences of the edit on the protein sequence 
are the same (red/blue). g UMAPs highlighting mutational consequences for the predicted genotypes (upper, 
non-genotyped data set) compared to the called genotypes (lower, genotyped data set). The colored cells 
are homozygous stop codon (brown), splice (yellow), or missense variants (red), with other cells shown in 
gray. Compare to Additional file 1: Fig. S2i. h Percentages of cells showing the consequence of mutations 
from actual genotyping in LoF and not LoF clusters. For the assignment of probable consequences using 
VEP, only homozygous mutations were included, as heterozygous edits are not expected to have a strong 
functional consequence. See also Additional file 1: Figs. S1 and S2
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cells from each edited cell, all of which are marked by the same barcode. When ana-
lyzing genotyping from single cells, we frequently see multiple heterozygous edits per 
cell which are not present when looking at the consensus genotype of barcode groups 
of 3 or more cells (Additional file 1: Fig. S2b). Thus, we believe these are due to errors in 
the single-cell genotyping, which can be overcome by considering multiple cells within 
a single barcode group and that we can confidently call genotypes with a minimum of 3 
cells per barcode. Based on our data, we would suggest genotyping each barcode across 
10 cells to ensure most barcodes have > 3 cells and measuring transcriptome with ~ 50 
cells depending on the strength of phenotype meaning that in the order of a thousand 
variants can be assayed in a single experiment. These variants can be within a single gene 
or spread across hundreds of sites across the genome.

Using the above criteria, in our data, we were able to call 233 barcodes with confident 
genotypes that were represented by 18,978 cells in the transcriptomics analysis (average 
81 cells/barcode) (the “ Methods” section, Fig. 1d, e), and these barcodes were used in 
all subsequent analyses. For 25 gRNAs, we saw different barcodes for the same gRNA, 
resulting from multiple independent editing events (Additional file 1: Fig. S2c). When 
the actual genotypes were compared with those predicted from the gRNA sequence, 
only 50% of genotypes were exactly as predicted (Fig. 1f ), although this was improved 
to 71% when analyzed at the protein level due to degeneracy in codon usage (Fig.  1f, 
Additional file 1: Fig. S2d, 2e). Of the 29% with functional consequences different from 
the predicted ones, 48.4% had heterozygous edits, 45.2% were unedited, and 6.5% had 
a different functional consequence. The most frequent edits were homozygous (160 of 
233 barcodes) followed by heterozygous edits on 1 (73 barcodes) or 2 alleles (30 bar-
codes) (Additional file 1: Fig. S2e, 2f ). Most homozygous edits were within the predicted 
base editing window (66%, Additional file  1: Fig. S2g, h), with 8% of these also show-
ing homozygous edits outside the window (Additional file 1: Fig. S2h). These results are 
important for interpreting base editing screens where genotype is inferred from sgRNA 
identity, since a large proportion of edits are not as predicted.

Analysis of the transcriptome of these genotyped cells showed that there was an 
improvement in the classification of stop codon or splice variant mutations into the cor-
rect (LoF) cluster and WT cells into the not LoF cluster when considering actual geno-
types (Fig. 1g, h), compared to using the gRNA as a proxy of genotype. A small number 
of cells (56) with stop codon mutations were still assigned to the not LoF cluster. How-
ever, when considering barcode groups consisting of > 3 cells, all stop codon mutations 
are in the LoF cluster (Additional file 1: Fig. S2i). This highlights the benefits of analyzing 
the data in terms of barcode groups and suggests the incorrectly classified single cells 
are likely due to misassignment of barcodes in the 10 × experiment. Notably, missense 
mutations present for a barcode group in the not LoF cluster can be unambiguously 
defined as mutations that do not result in a loss of JAK1 function, rather than gRNAs 
that do not edit, and can therefore be used to assign these variants of unknown signifi-
cance (VUS) as true benign mutations.

Similarities between the transcriptomic changes resulting from the different muta-
tions separated barcodes into two main groups (Fig. 2a), those containing predominantly 
LoF mutations (stop codon, splice variant, some missense) or not LoF (WT, synony-
mous, some missense). We used diffusion maps [28] to identify trajectories in the data 
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(Fig. 2b), and the first diffusion component accurately reflected the trajectory between 
not LoF and LoF mutations (diffusion score, the “  Methods” section). We confirmed 
this by comparison with JAK-STAT pathway activity (Additional file  1: Fig. S3a) [29]. 
The transcriptomic changes caused by the mutations split into two main clusters when 
ordered by diffusion score (Additional file 1: Fig. S3b) and correlated well with the dif-
ferential expression of JAK-STAT pathway genes (Additional file  1: Fig. S3c). WT and 
synonymous variants had very low diffusion scores, stop codon or splice variants had 
high diffusion scores, and missense mutations were bimodally distributed between the 
two (Fig. 2c).

Fig. 2  Transcriptomic changes of genotyped cells accurately classify missense mutations into three 
functional categories. a Correlations of differential gene expression of each barcode to cells with WT 
genotypes, including non-targeting gRNAs. For each barcode, the consequence and predicted consequence 
of homozygous mutations are shown. The barcodes fall into two groups: one consisting mainly of stop 
codons, splice variants, and missense mutations and a second one containing many WT barcodes. b 
Diffusion map showing a low-dimensional representation to identify the main directions of variation. c The 
first diffusion component (diffusion score) acts as a measure of loss of function with a high diffusion score 
for homozygous stop codons and a low diffusion score for WT and homozygous synonymous mutations. 
d Demonstration of low false-negative and false-positive rates for calling edits in barcode groups. Diffusion 
score for barcodes called homozygous stop codons and WT. e Possible phenotypic consequences of small 
differences in editing. Barcodes with the same gRNA but different edits (heterozygous versus homozygous, 
one edit versus two consecutive edits). The position is the editing position on chr1. Note that editing may 
be different for the three alleles of the same cells. f Transcriptomic heterogeneity of homozygous missense 
variants. Density plots for the diffusion scores of all barcodes with homozygous missense variants, including 
variants with low impact (low diffusion score indicating no LoF-benign), intermediate diffusion scores 
(indicating separation of function (SoF)), and high impact (high-score missense) mutations. Boxed barcodes 
highlight variants with intermediate diffusion scores, characterized by lower FACS scores and higher 
proliferation scores (SoF)
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Barcodes with genotyped homozygous stop codon mutations were universally (100%, 
12 out of 12) classified with high diffusion scores, and all 77 barcodes with WT geno-
types except one (> 98%) were classified with low diffusion scores (Fig. 2d). Out of the 
15 barcodes called as homozygous splice variants, 93% (14) had high diffusion scores. 
Therefore, out of the 104 barcodes that were called with either a WT or a definite LoF 
genotype (stop/splice), 26 were true positives (definite LoF phenotype-high diffusion 
score), 1 was false positive (called as splice variant, but low diffusion score), one was false 
negative (precision 96%, recall 96%). This shows that our genotyping pipeline using > 3 
cells per barcode is highly effective and has a very low rate of incorrect genotype calls. 
This compares to 28 predicted stop/splice with 8 false positives and 4 false negatives 
(precision 78%, recall 88%) using the predicted genotypes.

The benefit of genotyping is illustrated in two examples where we had the same gRNA 
associated with two different barcodes and where the genotype of these barcodes was 
different (Fig.  2e). In the first, both barcodes had a homozygous edit at chromosome 
1 position 64834625, but only the barcode that was additionally edited at position 
64834624 showed a LoF phenotype, indicating that this mutation or the combination 
of the two together was causing the loss of JAK1 function. In the second example, only 
the homozygous edit at position 64857751 showed a LoF phenotype, whereas the het-
erozygous edit did not. Taken together, these observations demonstrate the utility of 
genotyping editing events to unambiguously interpret variant functions, even in a screen 
optimized for very high base editing activity.

Some of the missense mutations had a diffusion score between the WT and LoF val-
ues, suggesting an intermediate phenotype (Fig.  2c, f ). In our previous screen, these 
gRNAs had strong effects in the proliferation assay (prolif.) but weaker effects on PD-L1 
and MHC-I protein expression (FACS, Fig. 2f ), suggesting they could be a separation of 
function (SoF) variants [23]. Closer analysis revealed that cells with these cell barcodes 
(and thus deriving from the same parent cell) were distributed across the diffusion score 
range. This shows that for these variants, there is a stochastic response to IFN-γ, with 
some cells responding as normal, others not at all, and some with an intermediate effect. 
This may help to explain the difference between their long-term effects on cell growth 
(prolif, Fig. 2f ) and their immediate effects on protein expression (FACS, Fig. 2f ), since 
growth integrates across time, whereas protein expression is a snapshot of their imme-
diate response. SoF variants showed differential expression of IRF9, a key regulator of 
IFN-γ signaling, that may control the threshold of transcriptional response between WT, 
SoF, and LoF (Additional file 1: Fig. S3d). These observations would not be possible with-
out genotyping and single-cell analysis.

Conclusion
In summary, we present scSNV-seq, a technique that allows the direct linkage of gen-
otype to whole-transcriptome readout in high-throughput single-cell perturbation 
screens. We demonstrate its effectiveness in a base editor mutagenesis screen across 
JAK1 to classify LoF missense variants. Importantly, it allows us to identify benign 
variants or variants with an intermediate phenotype (Additional file 2: Table S1) which 
would otherwise not be possible. The methodology is applicable to any other methods 
for introducing variation such as HDR, prime editing [30], or saturation genome editing 
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[10] since it does not rely on gRNA identity to infer genotype. Our method relies on 
lentiviral barcoding of dividing cells and so cannot be applied to tissue samples or post-
mitotic cell types. However, due to the single-cell readout, it can be applied in a cell-type 
and state-specific manner and to primary cells such as T cells, B cells, hematopoietic 
stem cells, keratinocytes, and fibroblasts that can be transduced and expanded, but 
where the inability to clone cells normally prevents analysis of engineered SNVs. The 
rich phenotypic readout of the whole transcriptome for each perturbation classifies vari-
ants based on transcriptional signatures, enabling comparison to perturbations in dis-
ease. We believe scSNV-seq will be invaluable for screening the functional significance 
and downstream effects of the growing list of coding and non-coding variants identified 
from human genetics analyses such as GWAS and cancer genome sequencing.

Methods
gRNA library cloning to include PuroR barcode and iBAR barcode libraries

To introduce the PuroR barcode (in the 5′ UTR of the puromycin resistance gene), a 
single-stranded ultramer containing NeoUTR3 [31] was amplified using KAPA to add 
Gibson arms and a 12N barcode in the reverse primer. After SPRI purification, the 
product was cloned using Gibson assembly into lentivector (Addgene #67,974) cut with 
XbaI and XhoI. After ethanol precipitation, 5 Gibson reactions were electroporated into 
supercompetent cells (Endura, Lucigen) and grown in liquid culture to give a coverage 
of around 100 million barcodes. gRNA with iBAR barcodes were introduced into the 
PuroR library by amplifying the gRNA library tiling JAK1 [23] (Twist, 2000 guides, 1055 
of which map to JAK1 with the remainder being guides targeting intergenic regions, 
essential genes, or non-targeting controls) to include a 6N randomized iBAR barcode in 
the primer. After a nested PCR, the gRNA iBAR library was cloned by Gibson into the 
PuroR library cut with BbsI and BamHI. After ethanol precipitation, 2 Gibson reactions 
were transformed into supercompetent cells and grown to give a coverage of around 40 
million events. All primers are detailed in Additional file 3: Table S2.

Base editing screens

For base editing experiments, we derived a clonal line of HT-29 cells expressing a base 
editor (cytidine BE3-NGG) under a doxycycline-inducible promoter [23] and introduced 
the lentiviral gRNA library tiling JAK1 with PuroR and iBAR barcodes as described 
above. We used an infection rate of ~ 30% to minimize the introduction of multiple 
gRNAs in one cell and selected infected cells with 2 µg/ml puromycin (Thermo Fisher 
Scientific). Cells were maintained in 0.5 µg/ml puromycin for the duration of the experi-
ment to maintain gRNA expression. Base editing was induced by the addition of doxycy-
cline (1 μg/ml; Sigma Aldrich) for 72 h. After editing, we bottlenecked a subset of these 
edited cells (15,000 cells) and also used FACS [23] to select LoF (50,000 cells) to ensure 
we captured representative phenotypes in our bottlenecked populations. After expan-
sion, these cells were both loaded onto the Chromium X (4 lanes, aiming to recover 
60,000 cells per lane) for transcriptomic experiments (see below for further details) and 
were also further bottlenecked (8000 cells) for the genotyping plus transcriptomic exper-
iments. After further expansion, these cells were single-cell genotyped with the Tapestri 
machine (Mission Bio, according to the manufacturer’s instructions), using 4 reactions, 
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up to 10,000 cells per reaction and using a custom panel of amplicon sequences (Addi-
tional file 3: Table S2) spanning JAK1 exons and promoter region, as well as the gRNA 
plus iBAR barcodes and PuroR barcodes. The same population of cells was also loaded 
onto the Chromium X (2 lanes, aiming to recover 60,000 cells per lane). For all tran-
scriptomics experiments, the base editor was induced again for 24 h as we have found 
it necessary to have expression of Cas9 to stabilize the gRNA transcripts and improve 
gRNA detection in single cells. We stimulated cells with IFN-γ (400 U/ml; Thermo 
Fisher Scientific) for 16 h before processing cells. We used the 5′HT kit (10X Genom-
ics), and cDNA libraries were prepared according to the manufacturer’s instructions. 
We performed direct gRNA capture by spiking in a scaffold-specific RT primer before 
loading, and after the cDNA amplification, we performed a nested PCR from the small 
SPRI fraction to produce a library for sequencing both the gRNA and the iBAR barcode. 
We also spiked in a puromycin resistance gene-specific RT primer and carried out an 
analogous nested PCR in order to produce a PuroR barcode library (primer sequences in 
Additional file 3: Table S2). Sequencing was performed on the NovaSeq 6000 (Illumina).

Data analysis of single‑cell base editor screen without genotyping (non‑genotyped large 

BE experiment)

Processing and quality control

We used Cell Ranger 7.0.1 to obtain UMI counts for gRNA and mRNA and for cell call-
ing. For quality control, we removed low outliers for the total count, low outliers for 
the number of detected features, and high outliers for the percentage of counts from 
mitochondrial genes using the scater [32] Bioconductor package, obtaining 155,429 cells 
(non-genotyped large BE experiment).

gRNA calling

We developed a robust method to call gRNAs and other barcodes in cells from (UMI) 
counts using a probabilistic model of mixtures of skewed normal distributions with 3 
components. We considered all UMI counts above a minimum threshold of 2 in all cells. 
Then, we used the mixture model to group them into 3 clusters, 1 cluster for ambient 
background noise and 2 clusters for signal counts, to allow for a bimodal distribution of 
signal counts. For robust gRNA assignment and to exclude undetected multiple gRNA 
assignments in a cell, we defined 2 thresholds for UMI counts: a lower threshold—UMI 
counts below this threshold mean a 90% probability of being in the ambient cluster—and 
an upper threshold—UMI counts below this threshold correspond to a 10% probability 
of being in the ambient cluster. A gRNA was then called in a cell if UMI counts for 1 
gRNA are above the upper threshold and no other gRNAs have UMI counts above the 
lower threshold. We obtained 43,639 cells from this robust assignment of one gRNA and 
one iBAR per cell, which we used for downstream analysis. Using only cell barcodes with 
a unique gRNA and iBAR assigned to them also removed most doublets, as these would 
have 2 gRNAs.

Dimensionality reduction and clustering

First, genes that are differentially expressed (DE) for at least one gRNA (with at least ten 
cells assigned to it) compared to cells with non-targeting gRNAs are identified using the 
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Wilcoxon rank-sum test [33]. Then, we performed principal component analysis (PCA) 
on the data, subset to the DE genes and the genes in the JAK-STAT pathway. Louvain 
clustering [34] was performed on a neighborhood graph using the ten nearest neighbors 
for each cell, based on the low-dimensional representation obtained by the PCA (Addi-
tional file 1: Fig. S1b). Two larger meta-clusters (Fig. 1a, referred to as WT (wild-type) 
and LoF (loss-of-function) are formed by grouping clusters by the similarity of their 
transcriptomes (see dendrogram in Additional file 1: Fig. S1b) and by the percentage of 
cells with non-targeting gRNAs in the cluster (Additional file 1: Fig. S1c).

Differential expression analysis for LoF gRNAs

gRNAs for which at least 70% and at least 3 cells are in the LoF cluster were assigned to 
the LoF group. Differential analysis was performed between all cells of the LoF group 
and all cells with non-targeting gRNAs using the Wilcoxon rank-sum test [33] (Fig. 1c). 
The Wilcoxon rank-sum test is a standard non-parametric test that compares for each 
gene how often its expression is higher for the LoF group compared to the cells with 
non-targeting gRNAs. Genes more highly or lowly expressed significantly often at FDR 
level of 0.1 are highlighted in Fig. 1c. The area under the curve (AUC) is the proportion 
of times that the expression of a gene is higher for the LoF group than in a correspond-
ing cell of the non-targeting group, where corresponding refers to being the same quan-
tile within the respective group. Therefore, AUC < 0.5 means downregulation in the LoF 
group and AUC > 0.5 upregulation. Using a non-parametric approach like AUC is more 
appropriate and robust for cases where a set of cells cannot be assumed to follow a para-
metric distribution like a Gaussian or a negative Binomial distribution. Here, we cannot 
assume cells of the same barcode have been perturbed to follow the parametric distribu-
tion, as the cells may have been impacted to different degrees. An extreme example of 
this is the SoF mutants (Fig. 2f ).

Experiment with genotyping: analysis of scDNA‑seq modality

The Tapestri DNA Pipeline On-prem was used for QC, cell barcode correction, align-
ment, and cell calling, using as the reference the hg38 genome with pKLV2 added 
(Additional file 3: Table S2). For each cell MissionBio barcode identified as a cell by 
the pipeline (34,801), variant calling was performed using GATK HaplotypeCaller 
[35]. gRNA, iBAR, and puroR counts were computed for each cell barcode, using the 
reads for pKLV2 from the aligned bam files. Then, gRNAs, iBARs, and puroRs were 
assigned to cells using the same gRNA calling method as described above for the 
scRNA-seq modality. We obtained 13,102 cells with a unique puroR barcode robustly 
assigned, 10,869 cells with a gRNA + iBAR combination robustly assigned, and 10,112 
cells with both unique puroR and unique gRNA + iBAR assigned, i.e., 77% of cells 
with a unique puroR barcode assigned were also assigned both gRNA and iBAR, and 
93% of all cells with unique gRNA + iBAR were assigned a unique puroR (Additional 
file 1: Fig. S2a). This showed that while the detection of the puroR barcode was better 
for the scDNA modality, gRNA + iBAR and puroR assignments agreed almost per-
fectly for cells with a robust gRNA assignment. It allows us to map puroR barcodes to 
gRNA + iBAR, to facilitate analysis for the scRNA-seq modality, where we used cells 
with only iBAR + gRNA assigned and without puroR, as iBAR + gRNA detection was 



Page 11 of 15Cooper et al. Genome Biology           (2024) 25:20 	

much better than for puroR. We established this correspondence between puroR on 
the one hand and gRNA + iBAR on the other hand for all puroRs that only occurred 
paired with one gRNA + iBAR and paired with that gRNA + iBAR for at least 2 cells. 
By using only cells with confidently assigned unique barcodes, we avoid including 
doublets and cells with multiple gRNAs, as well as droplets mistakenly identified as 
cells. Groups of cells from the same parent cell (barcode groups) were identified as 
groups that either share the same gRNA-iBAR combination and the same puroR. 
For cases where either of the barcodes could not be called in a cell, the assign-
ment to groups was performed on the basis of the barcode called (iBAR + gRNA or 
puroR). We obtained 332 unique barcodes with at least 3 cells and with puroR and 
iBAR + gRNA confidently assigned. The smaller number of gRNAs represented com-
pared to the large BE experiment resulted from deliberate bottlenecking. In fact, only 
501 of the gRNAs were present with at least 1 cell for the scDNA modality (290 with 
at least 2 cells, 184 with at least 10 cells).

Genotypes were then called on a per barcode group basis, to allow robust genotyp-
ing for single-cell data, which have higher noise levels than pooled data and may be 
affected by allele dropout as well as distortion of genotype calling because of ambient 
counts. First, we subsetted cell genotypes to C- > T and A- > G mutations (for gRNAs 
on the reverse strand) and removed frequent mutations occurring in more than 10% 
of the barcodes, as we assumed that they were not caused by the gRNAs.

We called genotypes for barcode groups with at least 3 cells. We used the following 
computational method to assess for each barcode group whether a genotype can be 
called robustly (callability) and to call the genotype: For each position in the genome, a 
variant was called if it was present on at least one allele in at least 2 cells from the group 
comprising at least 50% of the cells and if a majority of cells with the variant have this 
variant on the same number of alleles. This relatively low threshold of 50% reflects the 
fact that it is unlikely that more than 2 cells and more than 50% of the cells of a bar-
code group have a miscalled mutation by chance and limits the impact of dropout and 
missed mutations on genotype calling at the level of barcode-groups. A barcode group 
was called WT, if for each position, no more than 1 cell (or 0 cells if < 10 cells per bar-
code group) has a mutation on any number of alleles. The accuracy of this approach of 
genotype calling at the barcode-group level is shown in Fig. 2d. At this level of robust-
ness and accuracy, we were able to call genotypes for 233 barcodes (Fig. 1d, e, Additional 
file 2: Table S1), out of 332 barcodes with at least 3 cells identified overall (72%), with a 
total of 9908 cells. For barcodes with at least 3 cells, we found no significant dependence 
of the callability of the genotype on cell number (Wilcoxon rank sum test, p = 10.3%).

Consequences were assigned to edits on the barcode group level using VEP 
[36], restricting to MANE select proteins. Edits in the JAK1 promoter region 
(chr1:64,964,978–64,967,543) were labeled as promoter [23]. For several edits for a 
genotype, we call the most severe consequence, where stop codon/start lost > splice 
variant > missense variant > promoter/intron > synonymous. Detailed genotype calls 
per barcode with consequences and additional analysis results can be found in Addi-
tional file 2: Table S1.
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Experiment with genotyping: analysis of scRNA‑seq modality

This section describes the process of the scRNA-seq modality for the smaller and bot-
tlenecked experiment that was combined with the genotyping.

Basic processing and gRNA calling

Basic processing and gRNA calling were performed in the same way as for the non-
genotyped data. iBAR and puroR calling was performed as follows: first, a list of all 
possible iBARs was created, and a list of puroRs was obtained from the puroR calling 
at the scDNA level. These lists were used as input in the cellranger pipeline, to obtain 
UMI counts for iBARs and puroRs in the same way as for gRNAs. Finally, iBARs 
were called in cells using the same method as for gRNAs. Dimensionality reduction 
was also performed in the same way as for the non-genotyped data set. We obtained 
26,779 cells with a confidently assigned unique gRNA and iBAR. A total of 18,978 of 
these cells had a iBAR-gRNA combination present among the barcode groups with 
confident genotype assignment from the DNA modality (200 barcodes, median num-
ber of cells per barcode group 14, mean number 95, Fig. 1d).

Mapping genotypes to the scRNA‑seq modality

Integration with non‑genotyped data set

To compare the genotyped to the larger non-genotyped data set at the level of 
UMAPs and clusters, we used mutual nearest neighbours [37] for data integration 
and, based on the integrated PCA representation, assigned to each cell in the geno-
typed data set the UMAP coordinates of its nearest neighbor in the non-genotyped 
data set (Fig. 1e), and the most frequent cluster among its 10 nearest neighbors in the 
non-genotyped data set (Fig. 1h). For the clusters in Fig. 1h, a cell was filtered out if it 
was the only cell with a specific barcode within a cluster, to denoise possible errors in 
barcode assignment for the scRNA-seq data.

Correlation of differential expression across barcodes

Differential expression was performed for the barcode groups with confidently 
assigned genotypes and with at least 10 cells for the scRNA-seq modality (114 bar-
codes). Figure 2a shows the correlations of differential gene expression of each bar-
code to cells with both WT-genotypes and non-targeting gRNAs. The differential 
expression compared to the non-targeting cells with WT genotypes was computed 
for each gene and each barcode with at least 10 cells. Then, we computed the correla-
tion across the AUCs obtained by this differential expression analysis, including the 
computation of the correlation genes significantly differentially expressed for at least 
one barcode.

Diffusion and pathway scores

Diffusion maps [28] were used to identify trajectories in the data. The first diffu-
sion component, which we identified as the trajectory towards full LoF of JAK1, was 
named diffusion score. The pathway score for the JAK-STAT pathway (Additional 
file 1: Fig. S3a) was computed using the PROGENy tool [29].
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Estimation of false‑negative and false‑positive genotype calls

We estimated the accuracy of our computational approach to genotyping at the bar-
code level using stop codons (which we can assume to lead to LoF) and WT (which 
cannot be LoF). We estimated the number of false positive genotype calls by exam-
ining the number of barcodes called as stop codons or splice variants, but with a 
diffusion score indicative of not LoF. Similarly, false negatives were estimated by con-
sidering the number of barcodes called as WT, but with a LoF phenotype (Fig.  2d). 
False positives and negatives for predicted rather than actually called phenotypes 
were estimated using predicted genotypes, excluding those gRNAs targeting the JAK1 
promoter or UTR region and not covered by an amplicon.

Characterization of SoF variants

We explored heterogeneity of LoF level of homozygous missense variants by means of 
density plots for the diffusion scores of all barcodes with missense variants, including 
variants with low impact (low diffusion score indicating no LoF benign), intermediate 
diffusion scores (indicating SoF), and high impact (high-score missense) mutations 
(Fig. 2f ). The plots (one density plot for each barcode) are ordered vertically by the 
mean diffusion score across the cells with the barcode. Barcodes with intermediate 
diffusion scores are highlighted by a purple box. A second, smaller, purple box high-
lights one additional barcode, to illustrate that this barcode has the same genotype as 
one of the barcodes in the first box. The variants highlighted by the boxes are charac-
terized by lower FACS scores and higher proliferation scores (SoF).

Specific gene regulation differences between SoF and full-impact missense muta-
tions were identified as those either upregulated significantly for SoF compared to 
full-impact and not downregulated for SoF compared to benign missense variants 
(AUC > 0.45) or downregulated significantly for SoF compared to full impact and not 
upregulated for SoF compared to benign missense variants (AUC < 0.55, Additional 
file 1: Fig. S3d). These cutoffs distinguish these genes from those that are upregulated 
compared to high-score missense mutations and downregulated compared to benign 
missense mutations, i.e., their gene expression is on a progressive trajectory between 
benign and full LoF (area highlighted in yellow in Additional file 1: Fig. S3d).
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